dc.contributor.author | Neguţ, Andrei | |
dc.contributor.author | Oberdieck, Georg | |
dc.contributor.author | Yin, Qizheng | |
dc.date.accessioned | 2022-10-13T13:47:53Z | |
dc.date.available | 2022-10-13T13:47:53Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/145816 | |
dc.description.abstract | <jats:title>Abstract</jats:title>
<jats:p>We construct an explicit, multiplicative Chow–Künneth decomposition for the Hilbert scheme of points of a K3 surface. We further refine this decomposition with respect to the action of the Looijenga–Lunts–Verbitsky Lie algebra.</jats:p> | en_US |
dc.language.iso | en | |
dc.publisher | Walter de Gruyter GmbH | en_US |
dc.relation.isversionof | 10.1515/CRELLE-2021-0015 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | De Gruyter | en_US |
dc.title | Motivic decompositions for the Hilbert scheme of points of a K3 surface | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Neguţ, Andrei, Oberdieck, Georg and Yin, Qizheng. 2021. "Motivic decompositions for the Hilbert scheme of points of a K3 surface." Journal für die reine und angewandte Mathematik, 2021 (778). | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.relation.journal | Journal für die reine und angewandte Mathematik | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2022-10-13T13:36:09Z | |
dspace.orderedauthors | Neguţ, A; Oberdieck, G; Yin, Q | en_US |
dspace.date.submission | 2022-10-13T13:36:10Z | |
mit.journal.volume | 2021 | en_US |
mit.journal.issue | 778 | en_US |
mit.license | PUBLISHER_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |