Show simple item record

dc.contributor.authorNeguţ, Andrei
dc.contributor.authorOberdieck, Georg
dc.contributor.authorYin, Qizheng
dc.date.accessioned2022-10-13T13:47:53Z
dc.date.available2022-10-13T13:47:53Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/145816
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>We construct an explicit, multiplicative Chow–Künneth decomposition for the Hilbert scheme of points of a K3 surface. We further refine this decomposition with respect to the action of the Looijenga–Lunts–Verbitsky Lie algebra.</jats:p>en_US
dc.language.isoen
dc.publisherWalter de Gruyter GmbHen_US
dc.relation.isversionof10.1515/CRELLE-2021-0015en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceDe Gruyteren_US
dc.titleMotivic decompositions for the Hilbert scheme of points of a K3 surfaceen_US
dc.typeArticleen_US
dc.identifier.citationNeguţ, Andrei, Oberdieck, Georg and Yin, Qizheng. 2021. "Motivic decompositions for the Hilbert scheme of points of a K3 surface." Journal für die reine und angewandte Mathematik, 2021 (778).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalJournal für die reine und angewandte Mathematiken_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-13T13:36:09Z
dspace.orderedauthorsNeguţ, A; Oberdieck, G; Yin, Qen_US
dspace.date.submission2022-10-13T13:36:10Z
mit.journal.volume2021en_US
mit.journal.issue778en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record