Show simple item record

dc.contributor.advisorDemler, Eugene
dc.contributor.authorSeetharam, Kushal
dc.date.accessioned2023-01-19T18:41:14Z
dc.date.available2023-01-19T18:41:14Z
dc.date.issued2022-09
dc.date.submitted2022-10-19T19:10:11.182Z
dc.identifier.urihttps://hdl.handle.net/1721.1/147262
dc.description.abstractQuantum computers and simulators have the potential to improve our understanding of physics, material science, chemistry, and biology by providing a window into the dynamics of quantum many-body systems that appear in these fields. In addition to growing our knowledge of fundamental science, an increased understanding of these systems could lead to technological innovations in energy, industrial processes, and medicine. There are several different quantum hardware platforms and simulation modalities, however, which can be used to perform quantum simulations of many-body dynamics. This thesis seeks to uncover guidelines to a seemingly simply question: how do we answer useful questions using quantum simulators? Answering this involves learning what are good questions to ask quantum simulators, which questions should be asked to which platforms, and how we should ask each question (digital, analog, or hybrid simulation). We develop intuition for these guidelines by exploring three quantum simulation contexts: Bose-Fermi mixtures, dissipative spin chains, and nuclear magnetic resonance (NMR) spectroscopy experiments.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright MIT
dc.rights.urihttp://rightsstatements.org/page/InC-EDU/1.0/
dc.titleQuantum simulation of many-body dynamics
dc.typeThesis
dc.description.degreePh.D.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeDoctoral
thesis.degree.nameDoctor of Philosophy


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record