Show simple item record

dc.contributor.advisorTenenbaum, Joshua B.
dc.contributor.authorMei, Lingjie
dc.date.accessioned2023-01-19T18:45:02Z
dc.date.available2023-01-19T18:45:02Z
dc.date.issued2022-09
dc.date.submitted2022-09-16T20:24:44.476Z
dc.identifier.urihttps://hdl.handle.net/1721.1/147316
dc.description.abstractWe present a meta-learning framework for learning new visual concepts quickly, from just one or a few examples, guided by multiple naturally occurring data streams: simultaneously looking at images, reading sentences that describe the objects in the scene, and interpreting supplemental sentences that relate the novel concept with other concepts. The learned concepts support downstream applications, such as answering questions by reasoning about unseen images. In this thesis, we introduce model FALCON. FALCON represents individual visual concepts, such as colors and shapes, as axis-aligned boxes in a high-dimensional space (the “box embedding space”). Given an input image and its paired sentence, our model first resolves the referential expression in the sentence and associates the novel concept with particular objects in the scene. Next, our model interprets supplemental sentences to relate the novel concept with other known concepts, such as “X has property Y” or “X is a kind of Y”. Finally, it infers an optimal box embedding for the novel concept that jointly 1) maximizes the likelihood of the observed instances in the image, and 2) satisfies the relationships between the novel concepts and the known ones. We demonstrate the effectiveness of our model on both synthetic and real-world datasets.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright MIT
dc.rights.urihttp://rightsstatements.org/page/InC-EDU/1.0/
dc.titleFALCON: Fast Visual Concept Learning by Integrating Images, Linguistic descriptions, and Conceptual Relations
dc.typeThesis
dc.description.degreeM.Eng.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeMaster
thesis.degree.nameMaster of Engineering in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record