MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trade-Space Analysis of Liquid Hydrogen Propulsion Systems for Electrified Aircraft

Author(s)
White, Andrew Scott
Thumbnail
DownloadThesis PDF (2.764Mb)
Advisor
Greitzer, Edward M.
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
This thesis assesses the feasibility of turbo-, hybrid-, and fully-electric aircraft propulsion systems to enable more efficient air transport. A modular optimization framework was developed to quantify system performance for single-aisle transport aircraft with a mission similar to a Boeing 737 MAX 8. Various propulsion systems leveraging superconducting motors, boundary layer ingestion, high-temperature PEM fuel cells, and liquid hydrogen fuel were examined. Aviation turbine fuel (ATF) and liquid hydrogen were compared using the payload-fuel energy intensity (PFEI), defined as the fuel energy required per product of range and payload. For a given mission, it was found that a hydrogen-fueled fully-electric configuration required similar fuel energy compared to an ATF-burning turbo-fan propulsion system (PFEI = 5.0). Relative to these systems, a hydrogen-fueled turbo-fan had 14% lower PFEI, an ATF-burning turbo-electric propulsion system had 23% higher PFEI, a hydrogen-fueled turbo-electric propulsion system had 8% lower PFEI, and a hydrogen-fueled hybrid-electric had 3% lower PFEI for the same mission.
Date issued
2022-09
URI
https://hdl.handle.net/1721.1/147320
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.