Show simple item record

dc.contributor.advisorKaashoek, M. Frans
dc.contributor.advisorZeldovich, Nickolai
dc.contributor.authorSharma, Upamanyu
dc.date.accessioned2023-01-19T18:49:55Z
dc.date.available2023-01-19T18:49:55Z
dc.date.issued2022-09
dc.date.submitted2022-10-19T18:58:50.592Z
dc.identifier.urihttps://hdl.handle.net/1721.1/147388
dc.description.abstractGrove is a new framework for machine-checked verification of distributed systems. Grove focuses on modular verification. It enables developers to state and prove specifications for their components (e.g. an RPC library), and to use those specifications when proving the correctness of components that build on it (e.g. a key value service built on RPC). To enable modular specification and verification in a distributed systems, Grove uses the idea of ownership from separation logic. Using Grove, we built a verified unreliable RPC library, where we captured unreliability in the formal specification by using duplicable ownership. We also built a verified exactly-once RPC library, where we reasoned about ownership transfer from the client to server (and back) over an unreliable network by using the escrow pattern. Overall, we developed and verified an example system written in Go consisting of the RPC libraries, a sharded key-value store with support for dynamically adding new servers and rebalancing shards, a lock service, and a bank application that supports atomic transfers across accounts that live in different shards, built on top of these services. The key-value service scales well with the number of servers and the number of cores per server. The proofs are mechanized in the Coq proof assistant using the Iris  library and Goose.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright MIT
dc.rights.urihttp://rightsstatements.org/page/InC-EDU/1.0/
dc.titleModular Verification of Distributed Systems with Grove
dc.typeThesis
dc.description.degreeS.M.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeMaster
thesis.degree.nameMaster of Science in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record