Show simple item record

dc.contributor.advisorKellis, Manolis
dc.contributor.authorJin, Roger
dc.date.accessioned2023-01-19T19:49:51Z
dc.date.available2023-01-19T19:49:51Z
dc.date.issued2022-09
dc.date.submitted2022-09-16T20:23:33.197Z
dc.identifier.urihttps://hdl.handle.net/1721.1/147430
dc.description.abstractscATAC-seq gives a comprehensive picture of the chromatin accessibility profile of a cell, covering not only protein-coding regions but also non-coding regulatory regions which are in theory missed by scRNA-seq. However, scATAC-seq data is highdimensional and noisy, aspects which when compounded with data scarcity present challenges for modeling on even seemingly-simple downstream tasks such as cell-type prediction. As such, researchers may benefit from access to a large library of models to evaluate. While we do not demonstrate state of the art results in any capacity, we provide an implementation of a simple representation of sparse tabular data that allows it to be inputted into the popular transformer family of architectures, and use this representation to train a transformer that predicts scRNA-seq given scATAC-seq. Our code is made available here https://github.com/rogershijin/GANOLI.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright MIT
dc.rights.urihttp://rightsstatements.org/page/InC-EDU/1.0/
dc.titleA Transformer for scATAC-scRNA Translation
dc.typeThesis
dc.description.degreeM.Eng.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeMaster
thesis.degree.nameMaster of Engineering in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record