MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decarbonizing the Global Shipping Industry: Evaluating Pathways for Alternative Fuels

Author(s)
Hong, Seoyeon Tara
Thumbnail
DownloadThesis PDF (2.903Mb)
Advisor
Paltsev, Sergey
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Achieving net-zero emissions across all sectors, including the shipping industry, which relies heavily on fossil fuels and traditional internal combustion engines for propulsion, is critical to mitigating climate change and limiting global temperature rise. This thesis evaluates decarbonizing pathways for the global shipping industry through alternative fuels. The decarbonization pathways for shipping are constructed by considering significant system decisions, including powertrains, fuel types, and feedstock. Each pathway is assessed based on cost and multi-attribute utility using system-level metrics relevant to shipping. For alternative fuels, fuel cost models have been developed to estimate the levelized cost of production based on varying electricity prices, natural gas prices, and capital and operating expenditure assumptions. With the fuel cost model results, the total cost of ownership models of bulk carrier vessels have been developed to calculate and compare the lifetime cost for operating vessels for various alternative fuel pathways. The cost models provide insights into the cost markup of alternative fuel pathways relative to the conventional fuels of maritime ships. The MIT’s Economic Projection and Policy Analysis (EPPA) model has been enhanced to represent a low-emission shipping option to assess the economic impact and make projections on the market share of the alternative fuel pathway through 2050. Required investment to enable low-emission shipping to enter the market has been estimated using the EPPA model. Combining findings from the multi-attribute utility, including lifecycle emissions of alternative fuels and economic modeling results, near-term, medium-term, and long-term pathways for low-emission shipping have been proposed.
Date issued
2022-09
URI
https://hdl.handle.net/1721.1/147461
Department
System Design and Management Program.
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.