MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Neural Network Pruning’s Effect on Generalization

Author(s)
Jin, Tian
Thumbnail
DownloadThesis PDF (14.58Mb)
Advisor
Carbin, Michael
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Practitioners frequently observe that pruning improves model generalization. A longstanding hypothesis attributes such improvement to model size reduction. However, recent studies on over-parameterization characterize a new model size regime, in which larger models achieve better generalization. A contradiction arises when pruning is applied to over-parameterized models – while theory predicts that reducing size harms generalization, pruning nonetheless improves it. Motivated by such a contradiction, I re-examine pruning’s effect on generalization empirically. I demonstrate that pruning’s generalization-improving effect cannot be fully accounted for by weight removal. Instead, I find that pruning can lead to better training, improving model training loss. I find that pruning can also lead to stronger regularization, mitigating the harmful effect of noisy examples. Pruning extends model training time and reduces model size, which improves training and strengthens regularization respectively. I empirically demonstrate that both factors are essential to explaining pruning’s benefits to generalization fully.
Date issued
2022-09
URI
https://hdl.handle.net/1721.1/147496
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.