MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Risk Aware Planning and Probabilistic Prediction for Autonomous Systems under Uncertain Environments

Author(s)
Han, Weiqiao
Thumbnail
DownloadThesis PDF (9.295Mb)
Advisor
Williams, Brian C.
Jasour, Ashkan
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
This thesis considers risk aware planning and probabilistic prediction for autonomous systems under uncertain environments. Motion planning under uncertainty looks for trajectories with bounded probability of collision with uncertain obstacles. Existing methods to address motion planning problems under uncertainty are either limited to Gaussian uncertainties and convex linear obstacles, or rely on sampling based methods that need uncertainty samples. In this thesis, we consider non-convex uncertain obstacles, stochastic nonlinear systems, and non-Gaussian uncertainty. We utilize concentration inequalities, higher order moments, and risk contours to handle non-Gaussian uncertainties. Without considering dynamics, we use RRT to plan trajectories together with SOS programming to verify the safety of the trajectory. Considering stochastic nonlinear dynamics, we solve nonlinear programming problems in terms of moments of random variables and controls using off-the-self solvers to generate trajectories with guaranteed bounded risk. Then we consider trajectory prediction for autonomous vehicles. We propose a hierarchical end-to-end deep learning framework for autonomous driving trajectory prediction: Keyframe MultiPath (KEMP). Our model is not only more general but also simpler than previous methods. Our model achieves state-of-the-art performance in autonomous driving trajectory prediction tasks.
Date issued
2023-02
URI
https://hdl.handle.net/1721.1/150099
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.