MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Macrophage-hitchhiking Anisotropic Microparticles for Therapeutic and Diagnostic Applications

Author(s)
Wang, Li-Wen
Thumbnail
DownloadThesis PDF (14.88Mb)
Advisor
Mitragotri, Samir
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Cell therapies represent a major paradigm shift of biotechnology in medicine due to its transformative potential in treating previously incurable diseases. A variety of cells have been applied for cell therapies, including stem cells, tissue-specific cells, and hematopoietic cells. Particularly, immune cells, a subset of blood cells, have gained significant attention owing to their inflammation-homing ability as well as inherently critical roles in disease progression and tissue regeneration. The prosperity of immune cell-based therapies in the clinic has fueled the efforts in immune cell engineering. Several approaches have been taken to functionalize immune cells, among which biomaterial-assisted cellular platforms, marrying the strengths of biomaterials and leukocytes, become a new pillar of immune cell engineering. In my thesis work, I provide a brief overview on the cell therapies in the clinic, followed by introducing two projects of biomaterial-assisted cellular platforms, where anisotropic microparticles and macrophage, a type of innate immune cells, were employed. Specifically, I developed and engineered discoidal microparticles that can hitchhike on the macrophage surface but resist phagocytosis due to their anisotropic morphology. This approach takes advantage of inflammation-homing capability of macrophages and enables stable loading of therapeutic and imaging agents in the extracellular space for therapeutic and diagnostic applications.
Date issued
2023-02
URI
https://hdl.handle.net/1721.1/150276
Department
Harvard-MIT Program in Health Sciences and Technology
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.