Show simple item record

dc.contributor.authorIto, Takuya
dc.contributor.authorYang, Guangyu Robert
dc.contributor.authorLaurent, Patryk
dc.contributor.authorSchultz, Douglas H
dc.contributor.authorCole, Michael W
dc.date.accessioned2023-04-04T18:28:34Z
dc.date.available2023-04-04T18:28:34Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/150415
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>The human ability to adaptively implement a wide variety of tasks is thought to emerge from the dynamic transformation of cognitive information. We hypothesized that these transformations are implemented via conjunctive activations in “conjunction hubs”—brain regions that selectively integrate sensory, cognitive, and motor activations. We used recent advances in using functional connectivity to map the flow of activity between brain regions to construct a task-performing neural network model from fMRI data during a cognitive control task. We verified the importance of conjunction hubs in cognitive computations by simulating neural activity flow over this empirically-estimated functional connectivity model. These empirically-specified simulations produced above-chance task performance (motor responses) by integrating sensory and task rule activations in conjunction hubs. These findings reveal the role of conjunction hubs in supporting flexible cognitive computations, while demonstrating the feasibility of using empirically-estimated neural network models to gain insight into cognitive computations in the human brain.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-022-28323-7en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleConstructing neural network models from brain data reveals representational transformations linked to adaptive behavioren_US
dc.typeArticleen_US
dc.identifier.citationIto, Takuya, Yang, Guangyu Robert, Laurent, Patryk, Schultz, Douglas H and Cole, Michael W. 2022. "Constructing neural network models from brain data reveals representational transformations linked to adaptive behavior." Nature Communications, 13 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-04-04T18:25:18Z
dspace.orderedauthorsIto, T; Yang, GR; Laurent, P; Schultz, DH; Cole, MWen_US
dspace.date.submission2023-04-04T18:25:21Z
mit.journal.volume13en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record