MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient perturbative framework for coupling of radiative and guided modes in nearly periodic surfaces

Author(s)
Fisher, Sophie E.
Thumbnail
DownloadThesis PDF (876.3Kb)
Advisor
Johnson, Steven G.
Terms of use
Attribution 4.0 International (CC BY 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We present a semi-analytical framework for computing the coupling of radiative and guided waves in slowly varying (nearly uniform or nearly periodic) surfaces, which is especially relevant to the exploitation of nonlocal effects in large-area metasurfaces. Our framework bridges a gap in the theory of slowly varying surfaces: aside from brute-force numerical simulations, current approximate methods can model either guided or radiative waves, but cannot easily model their coupling. We solve this problem by combining two methods: the locally periodic approximation, which approximates radiative scattering by composing a set of periodic scattering problems, and spatial coupled-wave theory, which allows the perturbative modeling of guided waves using an eigenmode expansion. We derive our framework for both nearly uniform and nearly periodic surfaces, and we validate each case against brute-force finite-difference time-domain simulations, which show increasing agreement as the surface varies more slowly.
Date issued
2023-06
URI
https://hdl.handle.net/1721.1/151257
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.