Show simple item record

dc.contributor.advisorOliver, William D.
dc.contributor.authorBanner, William P.
dc.date.accessioned2023-07-31T19:44:08Z
dc.date.available2023-07-31T19:44:08Z
dc.date.issued2023-06
dc.date.submitted2023-07-13T14:16:00.923Z
dc.identifier.urihttps://hdl.handle.net/1721.1/151493
dc.description.abstractQuantum and Quantum-inspired optimization represent rapidly growing fields that combine classical optimization techniques with either quantum-inspired ideas or quantum hardware to address complex optimization problems. This thesis provides an overview of quantum-inspired optimization as well as quantum optimization, including the theoretical underpinnings of both processes on hardware and in software. In particular, this thesis considers a specific, practically relevant problem, a BMW production planning problem, and evaluates the performance of quantum-inspired optimizers. This evaluation is implemented by comparing the performance of a family of quantum-inspired optimizers with that of several common black-box combinatorial methods. We find that the use of important operations research techniques including the incorporation of domain-specific information as well as state-space pruning improves the performance of all solvers. In addition, we find that in a majority of tested cases, quantum-inspired methods tie or improve upon the results of their conventional counterparts, albeit by small margins, particularly in regimes of moderate state-space size. This thesis demonstrates that quantum-inspired optimization can outperform many conventional optimization methods in some cases, motivating future use and study of quantum-inspired protocals as well as implementation of fully-quantum optimization techniques.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright retained by author(s)
dc.rights.urihttps://rightsstatements.org/page/InC-EDU/1.0/
dc.titleQuantum-inspired and Quantum Optimization on a Superconducting Quantum Processor
dc.typeThesis
dc.description.degreeS.M.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeMaster
thesis.degree.nameMaster of Science in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record