MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Superconducting Nanowire Technology for Microwave and Photonics Applications

Author(s)
Colangelo, Marco
Thumbnail
DownloadThesis PDF (90.60Mb)
Advisor
Berggren, Karl K.
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Quantum computing and quantum communication are innovative technologies promising to revolutionize several aspects of our societal landscape. However, early cutting-edge experiments are rapidly approaching significant scalability roadblocks. As the qubit count increases, superconducting quantum processors require an increasing number of control and readout electronic devices, which are incompatible at scale with the performance of dilution refrigerators. Photonic-based platforms struggle with integration issues due to operational, design, and heterogeneous material compatibility. In this thesis, we demonstrate that superconducting nanowires have the potential to drive a major leap in the scalability of these and other architectures. We show that the exotic microwave properties of superconducting nanowires enable cryogenic devices at microwave frequencies with an ultra-compact footprint. We introduce microwave directional couplers and resonators featuring a footprint reduction of up to 200 times, making them suitable for on-chip integration with superconducting quantum processors and in any application needing cryogenic microwave signal processing. Furthermore, we engineer the nanowire properties to overcome the metrics trade-offs of single-photon detectors. We demonstrate an all-in-one nanowire detector with record performances, imaging capabilities, and photon-number resolution capabilities, all in the same design. Our device can be used to scale experiments needing many high-performance detectors. Finally, we demonstrate single-photon detectors integrated on lithium-niobate-on-insulator with state-of-the-art performance. We also introduce integrated array technology on silicon-on- insulator. Our nanowire technology can be on-chip heterogeneously integrated with current quantum photonic platforms, removing the need for out-coupling to fiber-coupled detectors. In conclusion, superconducting nanowires have the potential to become a comprehensive solution for scaling classical and quantum architectures.
Date issued
2023-06
URI
https://hdl.handle.net/1721.1/151613
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.