MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fair, Robust, and Calibrated Deep Learning with Heavy-Tailed Subgroups

Author(s)
Hampton, Lelia Marie
Thumbnail
DownloadThesis PDF (1.038Mb)
Advisor
Pentland, Alexander P.
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
To deploy safe machine learning systems in the real world, we must ensure they are fair, robust, and calibrated. However, heavy-tails pose a challenge to this mandate, especially since real world data is often imbalanced and marginalized subgroups tend to be underrepresented. To move toward safer systems, we present two studies on fair pre-processing and ensemble learning, respectively. We show that fair pre-processing comes with a fairness-robustness-calibration tradeoff, and we present a novel adaptive sampling algorithm to overcome this tradeoff. Furthermore, we demonstrate that ensemble learning on its own increases the fairness, robustness, and calibration of machine learning models. The adaptive sampling algorithm and ensemble learning present opportunities for practitioners to overcome this tradeoff in practice.
Date issued
2023-06
URI
https://hdl.handle.net/1721.1/151670
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.