MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterizing the Energy Requirement of Computer Vision

Author(s)
Edelman, Daniel
Thumbnail
DownloadThesis PDF (2.687Mb)
Advisor
Gadepally, Vijay N.
Leiserson, Charles E.
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
The energy requirements of neural network learning are growing at a rapid rate. Increased energy demands have caused a global need to seek ways to improve energy efficiency of neural network learning. This thesis aims to establish a baseline on how adjusting basic parameters can affect energy consumption in neural network learning on Computer Vision tasks. I catalogued the effects of various adjust adjustment from simple batch size adjustment to more complicated hardware configuration (such as power capping). Findings include that adjusting from single precision model to a mixed precision model can result in energy reductions of nearly 40%. Additionally power capping the GPU can reduce energy cost by an additional 10%.
Date issued
2023-06
URI
https://hdl.handle.net/1721.1/151673
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.