Consistent Estimators for Learning to Defer to an Expert
Author(s)
Mozannar, Hussein
DownloadThesis PDF (1.167Mb)
Advisor
Sontag, David
Terms of use
Metadata
Show full item recordAbstract
Learning algorithms are often used in conjunction with expert decision makers in practical scenarios, however, this fact is largely ignored when designing these algorithms. In this thesis, we explore how to learn predictors that can either predict or choose to defer the decision to a downstream expert. Given only samples of the expert's decisions, we give a procedure based on learning a classifier and a rejector and analyze it theoretically. Our approach is based on a novel reduction to cost sensitive learning where we give a consistent surrogate loss for cost sensitive learning that generalizes the cross entropy loss. We show the effectiveness of our approach on a variety of experimental tasks.
Date issued
2023-06Department
Massachusetts Institute of Technology. Institute for Data, Systems, and SocietyPublisher
Massachusetts Institute of Technology