Show simple item record

dc.contributor.authorRohskopf, A.
dc.contributor.authorGoff, J.
dc.contributor.authorSema, D.
dc.contributor.authorGordiz, K.
dc.contributor.authorNguyen, N. C.
dc.contributor.authorHenry, A.
dc.contributor.authorThompson, A. P.
dc.contributor.authorWood, M. A.
dc.date.accessioned2023-10-06T15:49:52Z
dc.date.available2023-10-06T15:49:52Z
dc.date.issued2023-09-18
dc.identifier.urihttps://hdl.handle.net/1721.1/152387
dc.description.abstractAbstract Machine learning (ML) enables the development of interatomic potentials with the accuracy of first principles methods while retaining the speed and parallel efficiency of empirical potentials. While ML potentials traditionally use atom-centered descriptors as inputs, different models such as linear regression and neural networks map descriptors to atomic energies and forces. This begs the question: what is the improvement in accuracy due to model complexity irrespective of descriptors? We curate three datasets to investigate this question in terms of ab initio energy and force errors: (1) solid and liquid silicon, (2) gallium nitride, and (3) the superionic conductor Li $$_{10}$$ 10 Ge(PS $$_{6}$$ 6 ) $$_{2}$$ 2 (LGPS). We further investigate how these errors affect simulated properties and verify if the improvement in fitting errors corresponds to measurable improvement in property prediction. By assessing different models, we observe correlations between fitting quantity (e.g. atomic force) error and simulated property error with respect to ab initio values. Graphical abstracten_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1557/s43578-023-01152-0en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleExploring model complexity in machine learned potentials for simulated propertiesen_US
dc.typeArticleen_US
dc.identifier.citationRohskopf, A., Goff, J., Sema, D., Gordiz, K., Nguyen, N. C. et al. 2023. "Exploring model complexity in machine learned potentials for simulated properties."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-09-24T03:14:37Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-09-24T03:14:37Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record