MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integral Quadratic Constraints and Safety Certificates for Uncertainty Characterization and Control Safety-Aware Filtering of Proximity Operations Between Satellites

Author(s)
Garcia Burgos, Axel
Thumbnail
DownloadThesis PDF (8.794Mb)
Advisor
Linares, Richard
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Techniques in robust optimization and formal verification methods are used (1) to examine the stability and robust performance of a satellite controller that considers six-dimensional, uncertain state, and often unmodeled dynamics during rendezvous and proximity operations, and (2) to explore the synthesis of control Lyapunov/barrier functions (CLFs/CBFs) using neural networks and stochastic gradient descent to provide safety-aware filtering for the fuel-optimal control policies. A linear quadratic regulator controller for a servicer satellite (Servicer) is analyzed via the dissipativity inequality principle and quadratic constraints. This method allows the capture of unmodeled dynamics to reduce system uncertainty of proximity operations among the Servicer, client satellite (Client), and unsafe regions (e.g., obstacle). The same controller is implemented with a finite time horizon (i.e., model predictive controller) to filter out unsafe control output during an autonomous inspection of a Client. This framework mitigates the collision risk based on integral quadratic constraints (IQCs) worst bounds recommendation, miss distance, Mahalanobis distance, and Probability of Collision (Pc) metrics. Innovative deterministic reachability methods based on integral quadratic constraints and neural Lyapunov functions are compared and connected. The novel contributions of this work focus on formulating mathematical safety guarantees, modeling controller output, and reducing uncertainty on system performance when designing fuel-optimal and safe maneuvers of Servicer around the Client while avoiding unsafe regions in LEO.
Date issued
2023-06
URI
https://hdl.handle.net/1721.1/152485
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.