MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

View Synthesis for Visuomotor Policy Learning

Author(s)
Lin, Yen-Chen
Thumbnail
DownloadThesis PDF (23.11Mb)
Advisor
Isola, Phillip
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Visuomotor policy learning is the problem of teaching machines how to use visual information to determine how to interact with their environment. Recent approaches have harnessed deep learning models to demonstrate impressive results in multi-modal and multi-task generalization. However, these models often lack a comprehensive understanding of the 3D world as they are primarily trained on large-scale RGB image datasets. In this thesis, we present a new framework that equips visuomotor policies with a view synthesizer. This generative model has the ability to envision novel viewpoints and perspectives of the 3D environment. Unlike training a visuomotor policy solely on real-world data, a view synthesizer can produce coherent views of a 3D scene in a controllable manner. This capability assists the policy in utilizing symmetries present in robotic tasks through learned and designed utilization. Learned utilization expands the training dataset of the visuomotor policy to implicitly encourage the emergence of symmetric properties through learning. On the other hand, designed utilization integrates symmetric properties into both the policy’s input representations and its model architectures to explicitly establish symmetric properties. We demonstrate that the proposed systems exhibit improved sample efficiency and generalization compared to visuomotor policies that lack the capability for view synthesis.
Date issued
2023-09
URI
https://hdl.handle.net/1721.1/152632
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.