MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Visible-Light Integrated Photonics for 3D-Printing and Trapped-Ion Systems

Author(s)
Corsetti, Sabrina M.
Thumbnail
DownloadThesis PDF (16.21Mb)
Advisor
Notaros, Jelena
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Silicon photonics has enabled next-generation optical technologies that have facilitated revolutionary advances for numerous fields spanning science and engineering, including computing, communications, sensing, and quantum engineering. In recent years, the advent of visible-light integrated photonics platforms has opened up the potential for further diverse applications. This thesis builds upon these recent technologies to demonstrate novel applications of visible-light integrated photonics. First, we combine the fields of silicon photonics and photochemistry to propose the first chip-based 3D printer, consisting of only a single millimeter-scale photonic chip without any moving parts that emits reconfigurable visible-light holograms up into a simple stationary resin well to enable non-mechanical volumetric 3D printing. This work presents a highly-compact, portable, and low-cost solution for the next generation of 3D printers. Next, we propose integrated-photonics-based system architectures and the design of key integrated-photonics components for both polarization-gradient and electromagnetically-induced-transparency cooling of trapped ions. Further, we experimentally demonstrate a pair of polarization-diverse gratings and design the first integrated polarization rotators and splitters at blue wavelengths, representing a fundamental stepping stone on the path to advanced operations for integrated-photonics-based trapped-ion quantum systems involving multiple polarizations. Finally, we demonstrate optical trapping and tweezing of microspheres and cancer cells using an integrated optical phased array for the first time, representing a two-orders-of-magnitude increase in the standoff distance of integrated optical tweezers and the first cell experiments using single-beam integrated optical tweezers.
Date issued
2023-09
URI
https://hdl.handle.net/1721.1/152677
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.