MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enabling Compositional Generalization of AI Systems

Author(s)
Li, Shuang
Thumbnail
DownloadThesis PDF (29.63Mb)
Advisor
Torralba, Antonio
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
A vital aspect of human intelligence is the ability to compose increasingly complex concepts out of simpler ideas, enabling both rapid learning and adaptation of knowledge. Despite their impressive performance, current AI systems fall short in this area and are often unable to solve tasks that fall outside of their training distribution. The work contained in this thesis aims to bridge this gap by incorporating compositionality into deep neural networks, thereby enhancing their ability to generalize and solve novel and complex tasks, such as generating 2D images and 3D assets based on complicated specifications, or enabling humanoid agents to perform a diverse range of household activities. The implications of this thesis are far-reaching, as compositionality has numerous applications across fields such as biology, robotics, and art production. By significantly improving the compositionality ability of AI systems, this research will pave the way for more data-efficient and powerful models in different research areas.
Date issued
2023-09
URI
https://hdl.handle.net/1721.1/152678
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.