MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Representation Learning Through the Lens of Science: Symmetry, Language and Symbolic Inductive Biases

Author(s)
Dangovski, Rumen Rumenov
Thumbnail
DownloadThesis PDF (18.87Mb)
Advisor
Soljačić, Marin
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
In this thesis, we explore representation learning, a key technique in machine learning and artificial intelligence that has led to remarkable advancements in fields such as speech, vision, language perception and generation, as well as solving complex scientific problems like protein folding. Despite its success, the prevailing method of end-to-end supervised learning faces challenges, including the need for large datasets, non-interpretable classifications, and difficulties in transferring representations. To address these limitations, we adopt a scientific perspective, focusing on machine learning tasks that are particularly affected by these issues, and developing benchmarks inspired by scientific principles. Our approach centers on the identification and development of novel inductive biases (assumptions made by the learning algorithm to improve generalization) based on symmetry, language, and symbolic properties. These inductive biases prove beneficial for both solving scientific problems using machine learning and enhancing representation learning methods. We term this methodology “Representation Learning through the Lens of Science” and demonstrate its effectiveness in various applications. Finally, we discuss the limitations of our approach and propose directions for future research to further refine and expand upon the concepts introduced in this thesis.
Date issued
2023-09
URI
https://hdl.handle.net/1721.1/152679
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.