MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On The Performance Of The Maximum Likelihood Over Large Models

Author(s)
Kur, Gil
Thumbnail
DownloadThesis PDF (1.530Mb)
Advisor
Rakhlin, Alexander
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
This dissertation investigates non-parametric regression over large function classes, specifically, non-Donsker classes. We will present the concept of non-Donsker classes and study the statistical performance of Least Squares Estimator (LSE) --- which also serves as the Maximum Likelihood Estimator (MLE) under Gaussian noise --- over these classes. (1) We demonstrate the minimax sub-optimality of the LSE in the non-Donsker regime, extending traditional findings of over these classes. (1) We demonstrate the minimax sub-optimality of the LSE in the non-Donsker regime, extending traditional findings of Birgé and Massart 93' and resolving a longstanding conjecture of Gardner, Markus and Milanfar 06'. (2) We reveal that in the non-Donsker regime, the sub-optimality of LSE arises solely from its elevated bias error term (in terms of the bias and variance decomposition). (3) We introduce the first minimax optimal algorithm for multivariate convex regression with a polynomial runtime in the number of samples -- showing that one can overcome the sub-optimality of the LSE in efficient runtime. (4) We study the minimal error of the LSE both in random and fixed design settings. and Massart 93' and resolving a longstanding conjecture of Gardner, Markus and Milanfar 06'. (2) We reveal that in the non-Donsker regime, the sub-optimality of LSE arises solely from its elevated bias error term (in terms of the bias and variance decomposition). (3) We introduce the first minimax optimal algorithm for multivariate convex regression with a polynomial runtime in the number of samples -- showing that one can overcome the sub-optimality of the LSE in efficient runtime. (4) We study the minimal error of the LSE both in random and fixed design settings.
Date issued
2023-09
URI
https://hdl.handle.net/1721.1/152867
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.