MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linking Biomolecular Condensates to Disease and Therapeutic Development

Author(s)
Hawken, Susana W.
Thumbnail
DownloadThesis PDF (72.79Mb)
Advisor
Young, Richard
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
The cell is compartmentalized into membrane-bound and membraneless organelles that organize and regulate key cellular functions. Over the past decade, growing evidence supports the notion that membraneless organelles, called biomolecular condensates, compartmentalize biomolecules – proteins and nucleic acids – involved in shared cellular processes through a biophysical process called phase separation. Biomolecular condensates have distinct physicochemical properties dependent on the molecular features and interactions of constituent biomolecules. Diseaseassociated mutations in individual biomolecules that compose condensates can alter condensate physicochemical properties. In addition, key drug targets have been identified as components of condensates. This thesis examines biomolecular condensates in disease and therapeutic development. We find that condensate-promoting features in condensate-forming proteins can be mapped and leveraged to build a resource cataloging mutations that likely contribute to condensate dysregulation in human diseases (Banani et al., 2022). Pathogenic mutations in condensate-promoting features span diverse disease classes across both Mendelian diseases and cancers. FDA-approved small molecule therapeutics interact with condensates, selectively partitioning into some condensates and not others (Klein et al., 2020). Selective partitioning of small molecules has broad implications for drug therapeutic activity and resistance. These findings demonstrate the need to integrate condensate-based models in our study of disease and therapeutic development – an effort which will generate novel pathogenic mechanistic hypotheses and improved drug design for human diseases.
Date issued
2023-09
URI
https://hdl.handle.net/1721.1/152890
Department
Massachusetts Institute of Technology. Computational and Systems Biology Program
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.