MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Exceptional Set Estimate for Restricted Projections to Lines in ℝ3

Author(s)
Gan, Shengwen; Guth, Larry; Maldague, Dominique
Thumbnail
Download12220_2023_Article_1456.pdf (293.7Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract Let $$\gamma :[0,1]\rightarrow \mathbb S^{2}$$ γ : [ 0 , 1 ] → S 2 be a non-degenerate curve in $$\mathbb R^3$$ R 3 , that is to say, $$\det \big (\gamma (\theta ),\gamma '(\theta ),\gamma ''(\theta )\big )\ne 0$$ det ( γ ( θ ) , γ ′ ( θ ) , γ ′ ′ ( θ ) ) ≠ 0 . For each $$\theta \in [0,1]$$ θ ∈ [ 0 , 1 ] , let $$l_\theta =\text {span}(\gamma (\theta ))$$ l θ = span ( γ ( θ ) ) and $$\rho _\theta :\mathbb R^3\rightarrow l_\theta $$ ρ θ : R 3 → l θ be the orthogonal projections. We prove an exceptional set estimate. For any Borel set $$A\subset \mathbb R^3$$ A ⊂ R 3 and $$0\le s\le 1$$ 0 ≤ s ≤ 1 , define $$E_s(A):=\{\theta \in [0,1]: \dim (\rho _\theta (A))<s\}$$ E s ( A ) : = { θ ∈ [ 0 , 1 ] : dim ( ρ θ ( A ) ) < s } . We have $$\dim (E_s(A))\le \max \{0,1+\frac{s-\dim (A)}{2}\}$$ dim ( E s ( A ) ) ≤ max { 0 , 1 + s - dim ( A ) 2 } .
Date issued
2023-11-03
URI
https://hdl.handle.net/1721.1/152910
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer US
Citation
The Journal of Geometric Analysis. 2023 Nov 03;34(1):15
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.