An Exceptional Set Estimate for Restricted Projections to Lines in ℝ3
Author(s)
Gan, Shengwen; Guth, Larry; Maldague, Dominique
Download12220_2023_Article_1456.pdf (293.7Kb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Abstract
Let
$$\gamma :[0,1]\rightarrow \mathbb S^{2}$$
γ
:
[
0
,
1
]
→
S
2
be a non-degenerate curve in
$$\mathbb R^3$$
R
3
, that is to say,
$$\det \big (\gamma (\theta ),\gamma '(\theta ),\gamma ''(\theta )\big )\ne 0$$
det
(
γ
(
θ
)
,
γ
′
(
θ
)
,
γ
′
′
(
θ
)
)
≠
0
. For each
$$\theta \in [0,1]$$
θ
∈
[
0
,
1
]
, let
$$l_\theta =\text {span}(\gamma (\theta ))$$
l
θ
=
span
(
γ
(
θ
)
)
and
$$\rho _\theta :\mathbb R^3\rightarrow l_\theta $$
ρ
θ
:
R
3
→
l
θ
be the orthogonal projections. We prove an exceptional set estimate. For any Borel set
$$A\subset \mathbb R^3$$
A
⊂
R
3
and
$$0\le s\le 1$$
0
≤
s
≤
1
, define
$$E_s(A):=\{\theta \in [0,1]: \dim (\rho _\theta (A))<s\}$$
E
s
(
A
)
:
=
{
θ
∈
[
0
,
1
]
:
dim
(
ρ
θ
(
A
)
)
<
s
}
. We have
$$\dim (E_s(A))\le \max \{0,1+\frac{s-\dim (A)}{2}\}$$
dim
(
E
s
(
A
)
)
≤
max
{
0
,
1
+
s
-
dim
(
A
)
2
}
.
Date issued
2023-11-03Department
Massachusetts Institute of Technology. Department of MathematicsPublisher
Springer US
Citation
The Journal of Geometric Analysis. 2023 Nov 03;34(1):15
Version: Final published version