MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigating Dislocation Behavior in High Entropy Alloys Using Atomistic Simulations

Author(s)
Oh, Changhwan
Thumbnail
DownloadThesis PDF (34.15Mb)
Advisor
Freitas, Rodrigo
Terms of use
In Copyright - Educational Use Permitted Copyright MIT http://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
High-entropy alloy (HEA) is a new alloying strategies involving multi-principal elements in near equiatomic proportions.[39, 11, 37, 19, 41, 13] To fully understand and tune the mechanical properties and crystal plasticity of the alloys, it is necessary to investigate the dislocation behavior[15]. The NiCoCr system is reported to have a single-phase face-centered cubic (FCC) crystal structure with enhanced mechanical properties compared to conventional alloys. Its negative stacking fault energy and high yield strength allows unique dislocation behavior. Also, the annealing temperature of NiCoCr system leads to a wide range of short range orders which directly affect the energy barrier of dislocation movement.[22] This work investigates the flow stresses in various systems under constant strain rate and the relationship between partial dislocation behavior and stacking fault energy of NiCoCr system.
Date issued
2022-05
URI
https://hdl.handle.net/1721.1/153079
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.