Show simple item record

dc.contributor.authorLyu, Linjie
dc.contributor.authorTewari, Ayush
dc.contributor.authorHabermann, Marc
dc.contributor.authorSaito, Shunsuke
dc.contributor.authorZollh?fer, Michael
dc.contributor.authorLeimk?hler, Thomas
dc.contributor.authorTheobalt, Christian
dc.date.accessioned2024-01-04T16:55:11Z
dc.date.available2024-01-04T16:55:11Z
dc.date.issued2023-12-04
dc.identifier.issn0730-0301
dc.identifier.urihttps://hdl.handle.net/1721.1/153281
dc.description.abstractInverse rendering, the process of inferring scene properties from images, is a challenging inverse problem. The task is ill-posed, as many different scene configurations can give rise to the same image. Most existing solutions incorporate priors into the inverse-rendering pipeline to encourage plausible solutions, but they do not consider the inherent ambiguities and the multi-modal distribution of possible decompositions. In this work, we propose a novel scheme that integrates a denoising diffusion probabilistic model pre-trained on natural illumination maps into an optimization framework involving a differentiable path tracer. The proposed method allows sampling from combinations of illumination and spatially-varying surface materials that are, both, natural and explain the image observations. We further conduct an extensive comparative study of different priors on illumination used in previous work on inverse rendering. Our method excels in recovering materials and producing highly realistic and diverse environment map samples that faithfully explain the illumination of the input images.en_US
dc.publisherACMen_US
dc.relation.isversionofhttps://doi.org/10.1145/3618357en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleDiffusion Posterior Illumination for Ambiguity-aware Inverse Renderingen_US
dc.typeArticleen_US
dc.identifier.citationLyu, Linjie, Tewari, Ayush, Habermann, Marc, Saito, Shunsuke, Zollh?fer, Michael et al. 2023. "Diffusion Posterior Illumination for Ambiguity-aware Inverse Rendering." ACM Transactions on Graphics, 42 (6).
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journalACM Transactions on Graphicsen_US
dc.identifier.mitlicensePUBLISHER_POLICY
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-01-01T08:49:46Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2024-01-01T08:49:47Z
mit.journal.volume42en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record