dc.contributor.author | Lyu, Linjie | |
dc.contributor.author | Tewari, Ayush | |
dc.contributor.author | Habermann, Marc | |
dc.contributor.author | Saito, Shunsuke | |
dc.contributor.author | Zollh?fer, Michael | |
dc.contributor.author | Leimk?hler, Thomas | |
dc.contributor.author | Theobalt, Christian | |
dc.date.accessioned | 2024-01-04T16:55:11Z | |
dc.date.available | 2024-01-04T16:55:11Z | |
dc.date.issued | 2023-12-04 | |
dc.identifier.issn | 0730-0301 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/153281 | |
dc.description.abstract | Inverse rendering, the process of inferring scene properties from images, is a challenging inverse problem. The task is ill-posed, as many different scene configurations can give rise to the same image. Most existing solutions incorporate priors into the inverse-rendering pipeline to encourage plausible solutions, but they do not consider the inherent ambiguities and the multi-modal distribution of possible decompositions. In this work, we propose a novel scheme that integrates a denoising diffusion probabilistic model pre-trained on natural illumination maps into an optimization framework involving a differentiable path tracer. The proposed method allows sampling from combinations of illumination and spatially-varying surface materials that are, both, natural and explain the image observations. We further conduct an extensive comparative study of different priors on illumination used in previous work on inverse rendering. Our method excels in recovering materials and producing highly realistic and diverse environment map samples that faithfully explain the illumination of the input images. | en_US |
dc.publisher | ACM | en_US |
dc.relation.isversionof | https://doi.org/10.1145/3618357 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Association for Computing Machinery | en_US |
dc.title | Diffusion Posterior Illumination for Ambiguity-aware Inverse Rendering | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Lyu, Linjie, Tewari, Ayush, Habermann, Marc, Saito, Shunsuke, Zollh?fer, Michael et al. 2023. "Diffusion Posterior Illumination for Ambiguity-aware Inverse Rendering." ACM Transactions on Graphics, 42 (6). | |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | |
dc.relation.journal | ACM Transactions on Graphics | en_US |
dc.identifier.mitlicense | PUBLISHER_POLICY | |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2024-01-01T08:49:46Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The author(s) | |
dspace.date.submission | 2024-01-01T08:49:47Z | |
mit.journal.volume | 42 | en_US |
mit.journal.issue | 6 | en_US |
mit.license | PUBLISHER_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |