MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The quintuplet annihilation spectrum

Author(s)
Baumgart, Matthew; Rodd, Nicholas L.; Slatyer, Tracy R.; Vaidya, Varun
Thumbnail
Download13130_2024_Article_22667.pdf (1.374Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We extend the Effective Field Theory of Heavy Dark Matter to arbitrary odd representations of SU(2) and incorporate the effects of bound states. This formalism is then deployed to compute the gamma-ray spectrum for a 5 of SU(2): quintuplet dark matter. Except at isolated values of the quintuplet mass, the bound state contribution to hard photons with energy near the dark-matter mass is at the level of a few percent compared to that from direct annihilation. Further, compared to smaller representations, such as the triplet wino, the quintuplet can exhibit a strong variation in the shape of the spectrum as a function of mass. Using our results, we forecast the fate of the thermal quintuplet, which has a mass of ~13.6 TeV. We find that existing H.E.S.S. data should be able to significantly test the scenario, however, the final word on this canonical model of minimal dark matter will likely be left to the Cherenkov Telescope Array (CTA).
Date issued
2024-01-25
URI
https://hdl.handle.net/1721.1/153453
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Publisher
Springer Berlin Heidelberg
Citation
Journal of High Energy Physics. 2024 Jan 25;2024(1):158
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.