dc.contributor.advisor | Adelson, Edward H. | |
dc.contributor.author | Liu, Sandra Q. | |
dc.date.accessioned | 2024-03-13T13:26:10Z | |
dc.date.available | 2024-03-13T13:26:10Z | |
dc.date.issued | 2024-02 | |
dc.date.submitted | 2024-02-15T21:16:07.636Z | |
dc.identifier.uri | https://hdl.handle.net/1721.1/153681 | |
dc.description.abstract | When we look to the future of soft robotics and manipulation, we begin to look towards sensory-rich and compliant grasping mechanisms. Not only do we want to capitalize on the significant advantages in safety and adaptability that soft robots have, we also want to incorporate high-resolution tactile sensors, which will allow soft robots to perform more tasks. One such system is the GelSight sensor, which is low-cost, effective, and high-resolution. However, the integration of these camera-based sensors into compliant manipulators is difficult due to the rigidity of the sensor backing. This thesis explores the design of multiple different compliant high-resolution tactile manipulators, along with some examples of their real-world uses. The first such design incorporates a simple camera-based tactile sensor into an exoskeleton-covered soft robot with vision-based proprioception. A later design integrates full camera-based tactile sensing capabilities into a flexible Fin Ray structure. Finally, the designs culminate in a novel soft-rigid human-inspired robotic hand with continuous tactile sensing which is capable of grasping heavier objects and safely interacting with humans. The incorporation of high-resolution tactile sensors into soft, compliant robots brings us closer to developing new manipulators that could someday match or exceed the capabilities of human hands. | |
dc.publisher | Massachusetts Institute of Technology | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | |
dc.rights | Copyright retained by author(s) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | Soft, Compliant Tactile Robotic Manipulators | |
dc.type | Thesis | |
dc.description.degree | Ph.D. | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
mit.thesis.degree | Doctoral | |
thesis.degree.name | Doctor of Philosophy | |