MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Perturbation-invariant Speech Representation Learning by Online Clustering

Author(s)
Chang, Heng-Jui
Thumbnail
DownloadThesis PDF (4.099Mb)
Advisor
Glass, James R.
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Despite success across various tasks, self-supervised speech models face significant challenges in enhancing content-related performance with unlabeled data, requiring substantial computational resources. Meanwhile, learning from clustered discrete units has been shown to facilitate accurate phonetic representations. Thus, this thesis investigates speaker and noise-invariant speech representations. First, Speaker-invariant Clustering (Spin) is proposed to extract content representations through online clustering and speaker-invariant cross-view prediction. Second, Robust Spin (R-Spin) is devised to extend Spin to handle more distorted speech signals by leveraging acoustic pieces. Furthermore, this thesis includes a diverse set of evaluation and visualization techniques to quantitatively and qualitatively analyze the perturbation invariability of the proposed methods. This thesis offers approaches to producing perturbation-invariant speech representations and deeply investigates the characteristics of the learned representations, providing insights into these models and cultivating future extension possibilities.
Date issued
2024-02
URI
https://hdl.handle.net/1721.1/153784
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.