MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Large Language Model Routing with Benchmark Datasets

Author(s)
Ou, Anthony C.
Thumbnail
DownloadThesis PDF (2.330Mb)
Advisor
Thompson, Neil
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
There is a rapidly growing number of open-source Large Language Models (LLMs) and benchmark datasets to compare them. While some models dominate these benchmarks, no single model typically achieves the best accuracy in all tasks and use cases. With a new dataset, it can be difficult to determine which LLM is best suited to the task. In this work we will address the challenges associated with selecting the best LLM model out of a collection for a new task. To do so, benchmark datasets are repurposed to learn a “router” model for this LLM selection, such that the “router” model will solve a collection of binary classification tasks. This work will demonstrate the utility and limitations of learning model routers from various benchmark datasets, where performance is improved upon using any single model for all tasks.
Date issued
2024-02
URI
https://hdl.handle.net/1721.1/153846
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.