MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bottom-Up Standardization For Data Preparation

Author(s)
Lai, Eugenie Y.
Thumbnail
DownloadThesis PDF (2.914Mb)
Advisor
Cafarella, Michael J.
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Data preparation is an essential step in every data-related effort, from scientific projects in academia to data-driven decision-making in industry. Typically, data preparation is not the novel or interesting piece of a project — it transforms raw data into a format that enables further innovative work. Because data preparation scripts are never intended to be interesting, are project-specific, and are written in general-purpose languages, they can be tedious to understand and check. As a result, data preparation scripts can easily become a breeding ground for poor engineering and statistical practices. Ideally, data preparation scripts are “admirably boring” — they should serve the project, but otherwise be as simple and as standard as possible. We propose a bottom-up script standardization framework that takes a user’s data preparation script and transforms it into a simpler, more standardized, more boring version of itself. Our framework takes the user’s input script not as an unchangeable definition of correctness, but as a semantic sketch of the user’s overall intent. We present an algorithmic framework and implemented a prototype system. We evaluate our approach against state-of-the-art methods, including GPT-4, on six real-world datasets. Our approach improves script standardization by 39.5% while not meaningfully changing the user’s intent, while GPT-4 achieves 2.9%.
Date issued
2024-02
URI
https://hdl.handle.net/1721.1/153866
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.