MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High throughput single molecule in situ-verified nucleic acid synthesis

Author(s)
Griswold, Kettner J. F., Jr.
Thumbnail
Download1418760890-MIT.pdf (9.418Mb)
Other Contributors
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Synthetic biology is a burgeoning field with applications in medicine, agriculture, chemistry, and other fields. Synthetic biology aims to rationally engineer novel functionality into organisms, from the molecular level to whole genome scale. As an engineering discipline, synthetic biology development follows a canonical design-build-test cycle. In a typical workflow, designs are generated in computer programs, and specified at the DNA level. Subsequently, DNA encoding the design must be built to specification and tested for desired functionality in vivo or in vitro. In current practice, building DNA, by de novo DNA synthesis and related methods, is a rate limiting and costly bottleneck for researchers. State of the art de novo DNA Synthesis technologies, are trial-and-error, nondeterministic processes where turnaround times for specified DNA range on the order of weeks, and cost up to several thousand dollars per gene, multigene order. Of the many challenges inherent to building novel DNA sequences is the occurrence of truncation errors (failure to extend), and damaging side reactions during synthesis of short DNA oligonucleotide (100bp) precursors used in DNA assembly. There are also challenges in assembling oligonucleotides due to the tendency of DNA to form secondary structures and undesired annealing products during assembly reactions. Consequently, DNA synthesis companies spend upwards of 80 percent of manufacturing time sequencing thousands of DNA assemblies until a correct DNA assembly is found. This thesis describes a method for rapid, scalable, de novo DNA synthesis embodied as highly parallelized single molecule enzymatic synthesis of 10KB sequences with real time in situ sequence verification.
Description
Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2019
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 42-43).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/154118
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology
Keywords
Program in Media Arts and Sciences

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.