MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Equivariant quantum connections in positive characteristic

Author(s)
Lee, Jae Hee
Thumbnail
DownloadThesis PDF (939.4Kb)
Advisor
Seidel, Paul
Terms of use
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
In this thesis, we apply techniques from symplectic Gromov--Witten theory to study the equivariant quantum connections in positive characteristic. The main examples of interest arise from symplectic resolutions. We introduce equivariant generalizations of the quantum Steenrod operations of Fukaya, provide nontrivial computations in the example of the cotangent bundle of the projective line, and explore the relationship with Varchenko's construction of mod p solutions to the quantum differential equation. We then prove the compatibility of the equivariant quantum Steenrod operations with the quantum differential and difference connections. As a consequence, we obtain an identification of our operations for divisor classes with the p-curvature of the quantum connection in a wide range of examples.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/155417
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.