Show simple item record

dc.contributor.advisorKim, Sangbae
dc.contributor.authorHan, Jessica
dc.date.accessioned2024-08-01T19:04:01Z
dc.date.available2024-08-01T19:04:01Z
dc.date.issued2024-05
dc.date.submitted2024-06-13T16:46:35.699Z
dc.identifier.urihttps://hdl.handle.net/1721.1/155889
dc.description.abstractRobotics holds the promise of transforming industries, from automating recycling to managing household chores, by enabling machines to perform tasks with human-like dexterity. However, current robotic manipulation systems struggle to achieve the real-time responsiveness required for such tasks. Traditional systems rely on cameras, which slow down control loops with dense and difficult-to-process data. This thesis addresses the need for real-time control in robotic manipulation by utilizing proximity sensors in a high-bandwidth, low-latency object avoidance reflex controller on the Biomimetic Robotics Lab’s dexterous robotic manipulation platform. The research focuses on the two most viable proximity sensors for robotic manipulation: the STMicroelectronics VL6180X Time-of-Flight sensor and the Thinker Phase-Modulated-Light sensor. These sensors are characterized based on their measurement range, error, variance, field-of-view, and convergence time to determine their usability in an object avoidance reflex. Following characterization, a study on the integration of these sensors into the manipulation platform is performed to assess sensing latency and bandwidth implications. Finally, validation of the optimal sensor-controller configuration for the object avoidance reflex—averaging two time-of-flight sensors with a linear virtual force—shows an improvement in bandwidth from 33 Hz to 115 Hz, enhancing the reactivity and stability of the object avoidance reflex. Overall, this research provides a comprehensive study on the individual sensor and sensor-integration levels of proximity sensors for object avoidance reflexes. It enables future researchers to be confident in the manipulation platform’s performance for further controls-level research.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright retained by author(s)
dc.rights.urihttps://rightsstatements.org/page/InC-EDU/1.0/
dc.titleProximity Sensors for a High-Bandwidth, Low-Latency Robotic Manipulation Object Avoidance Controller
dc.typeThesis
dc.description.degreeS.M.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
mit.thesis.degreeMaster
thesis.degree.nameMaster of Science in Mechanical Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record