MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clustering of Similar Incident Tickets Using Natural Language Processing

Author(s)
Chen, Jackie
Thumbnail
DownloadThesis PDF (4.094Mb)
Advisor
Lykouris, Thodoris
Daniel, Luca
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
As businesses increasingly rely on digital tools for operational efficiency and value creation, Software Asset Management (SAM) becomes an important business practice. This thesis explores the use of natural language processing (NLP) and clustering algorithms to identify recurring issues affecting software applications with the objectives to assess the technical health of applications and to identify opportunities to address software issues that repeatedly plague users. Using a dataset of incident tickets from a business unit of a pharmaceutical company, various machine learning models were designed and tested to identify recurring issues affecting the business' applications. Through a dashboard that visualizes the outputs of the models, the business is provided with insights into recurring issues affecting their digital tools. As validated through user feedback and visual inspection, the model outputs indicate promising results in the clustering of incident tickets, offering valuable insights to users to understand and address recurrent software problems. However, it is important to acknowledge the inherent challenges of unsupervised machine learning. While the results can help enhance business operations, caution is advised regarding the implications to users and the business when models produce unexpected results. This project is another example of the balance between leveraging machine learning for problem-solving and understanding the limitations of the models.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/155983
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Sloan School of Management
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.