MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization and Rule-Based Models for Hospital Inventory Management

Author(s)
Harihara, Caeley Gaw
Thumbnail
DownloadThesis PDF (7.245Mb)
Advisor
Gray, Martha
Zheng, Yanchong Karen
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
This thesis shows how optimization, rule-based models, and operational analytics can be used to help manage hospital surgical inventory. The models were created for AITA™, a team under Johnson & Johnson’s Ethicon subsidiary. The AITA™ Smart System is an intelligent inventory management solution that stores, organizes, and distributes products via Kiosk, Smart Shelf, and Mobile Hub devices. Every device requires a planogram, or a visual representation of which products to stock and the location of each product. This project focuses on creating models to automatically build and update these planograms. The models presented in this paper have already been adopted by the AITA™ team and have begun to show accuracy and efficiency gains when compared to the current manual process. Model-designed kiosks cover, on average, 7% more historical procedures than hand-made kiosks. Also, model-generated planograms are free from manual product selection and sorting errors. From an efficiency perspective, automatically creating and updating planograms will save the AITA™ team an average of 145 hours annually for every hospital served. These accuracy and efficiency gains will add value across the entire chain of care. The AITA™ team will have more time to grow their business and to develop new features. Meanwhile, providers will save time when managing and retrieving hospital inventory, which will free up more capacity for direct patient care.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156045
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Sloan School of Management
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.