MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Device Stack Optimization for Protonic Non-Volatile Programmable Resistors

Author(s)
Shen, Dingyu
Thumbnail
DownloadThesis PDF (17.42Mb)
Advisor
del Alamo, Jesús A.
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Analog computing could alleviate computational bottlenecks in digital deep learning systems by utilizing local information processing through the physical properties of devices, such as electrochemical ion-intercalation in three-terminal devices where channel resistance is modulated by ionic exchange via an electrolyte. Previous work has demonstrated such ionic programmable resistors featuring WO₃ as the channel, phosphorous-doped SiO₂ (PSG) as the electrolyte, Pd as the gate reservoir, and protons as the ions. This thesis aimed to optimize the device stack in four directions and demonstrated a symmetric WO₃-PSG-WO₃ structure in a CMOS-compatible process, with the help of circular transfer length model (CTLM), which efficiently examines the resistance properties of WO₃. We have explored: (a) device protonation as part of the fabrication process, (b) encapsulation preventing proton depletion during device fabrication and operation, (c) contact metal optimization to replace gold with a CMOS-compatible material, (d) PSG evaluation vehicle for device performance optimization. The symmetric device combining all the stack optimizations features non-volatile and repeatable conductance modulation with voltage pulses.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156286
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.