MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Toward Cell-Specific Nanoparticle Delivery Systems

Author(s)
Murphy, Sean
Thumbnail
DownloadThesis PDF (2.292Mb)
Advisor
Barzilay, Regina
Terms of use
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The targetable delivery of therapeutic nanoparticles remains a significant challenge in modern medicine, particularly due to the complexity, time, and expense involved in experimental design and optimization for cell-specific applications. To address this, NOCAP (Nanoparticle Optimization and Cell Affinity Prediction) was developed, a computational framework designed to (i) predict the affinities between nanoparticles and gene expression signatures of cancer cells and (ii) optimize nanoparticle formulations for specific targets. NOCAP successfully predicts cellular affinity for previously unseen cancer cell lines. The findings demonstrate the potential of machine learning to streamline the rational selection of target-specific nanoparticle drug delivery systems, paving the way for more efficient and precise therapeutic interventions.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156308
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.