MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploiting Observation Bias to Improve Matrix Completion

Author(s)
Park, Charlotte
Thumbnail
DownloadThesis PDF (873.5Kb)
Advisor
Shah, Devavrat
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
We consider a variant of matrix completion where entries are revealed in a biased manner, adopting a model akin to that introduced by Ma & Chen (2019) [1]. Instead of treating this observation bias as a disadvantage, as is typically the case, the goal is to exploit the shared information between the bias and the outcome of interest to improve predictions. Towards this, we consider a natural model where the observation pattern and outcome of interest are driven by the same set of underlying latent or unobserved factors. This leads to a two stage matrix completion algorithm: first, recover (distances between) the latent factors by utilizing matrix completion for the fully observed noisy binary matrix corresponding to the observation pattern; second, utilize the recovered latent factors as features and sparsely observed noisy outcomes as labels to perform non-parametric supervised learning. The f inite-sample error rates analysis suggests that, ignoring logarithmic factors, this approach is competitive with the corresponding supervised learning parametric rates. This implies the two-stage method has performance that is comparable to having access to the unobserved latent factors through exploiting the shared information between the bias and outcomes. Through empirical evaluation using a real-world dataset, we find that with this two-stage algorithm, the estimates have 30x smaller mean squared error compared to traditional matrix completion methods, suggesting the utility of the model and the method proposed in this work.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156312
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.