MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep and Dynamic Metabolic and Structural Imaging in Living Tissues

Author(s)
Liu, Kunzan
Thumbnail
DownloadThesis PDF (12.92Mb)
Advisor
You, Sixian
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Label-free imaging through two-photon autofluorescence (2PAF) of NAD(P)H allows for non-destructive and high-resolution visualization of cellular activities in living systems. However, its application to thick tissues and organoids has been restricted by its limited penetration depth within 300µm, largely due to tissue scattering at the typical excitation wavelength (∼750nm) required for NAD(P)H. Here, we demonstrate that the imaging depth for NAD(P)H can be extended to over 700µm in living engineered human multicellular microtissues by adopting multimode fiber (MMF)-based low-repetition-rate high-peak-power three-photon (3P) excitation of NAD(P)H at 1100nm. This is achieved by having over 0.5MW peak power at the band of 1100±25nm through adaptively modulating multimodal nonlinear pulse propagation with a compact fiber shaper. Moreover, the 8-fold increase in pulse energy at 1100nm enables faster imaging of monocyte behaviors in the living multicellular models. These results represent a significant advance for deep and dynamic metabolic and structural imaging of intact living biosystems. The modular design (MMF with a slip-on fiber shaper) is anticipated to allow wide adoption of this methodology for demanding in vivo and in vitro imaging applications, including cancer research, autoimmune diseases, and tissue engineering.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156342
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.