MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cluster Analysis in High Dimensions: Robustness, Privacy, and Beyond

Author(s)
Narayanan, Shyam
Thumbnail
DownloadThesis PDF (3.284Mb)
Advisor
Indyk, Piotr
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Cluster analysis focuses on understanding the cluster structure of data, and is perhaps one of the most important subfields in high-dimensional data analysis. Traditionally, cluster analysis focuses on partitioning data into closely related groups, such as in k-means clustering and learning mixture models. However, one sometimes overlooked part of cluster analysis is analyzing data from a single cluster: this encompasses problems such as mean estimation and covariance estimation, which correspond to learning the location and shape of a cluster, respectively. In this thesis, we study various classic problems in high-dimensional cluster analysis, relating to both identifying several clusters and learning a single cluster. We provide improved algorithms and lower bounds for problems including k-means and k-median clustering, Gaussian mean and covariance estimation, high-dimensional mean testing, and learning mixtures of Gaussians. Importantly, in this thesis we also focus on the socially motivated constraints of robustness, privacy, and explainability, and how they affect the complexity of these problems. In our quest to understand cluster analysis under such socially motivated constraints, we discover the first black-box transformation from robustness to privacy, as well as the first-known statistical separation between some natural models of robust statistics.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156617
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.