MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neuro-Symbolic Learning for Bilevel Robot Planning

Author(s)
Silver, Tom
Thumbnail
DownloadThesis PDF (20.65Mb)
Advisor
Kaelbling, Leslie Pack
Tenenbaum, Joshua B.
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Decision-making in robotics domains is complicated by continuous state and action spaces, long horizons, and sparse feedback. One way to address these challenges is to perform bilevel planning, where decision-making is decomposed into reasoning about “what to do” (task planning) and “how to do it” (continuous optimization). Bilevel planning is powerful, but it requires multiple types of domain-specific abstractions that are often difficult to design by hand. This thesis proposes the first unified system for learning all the abstractions needed for bilevel planning. Beyond learning to make planning possible, this thesis also considers learning to make planning fast, especially in environments with many objects. A final contribution considers planning to learn, where the robot iteratively plans online to collect additional data and then learns to improve planning. Altogether, the thesis represents a step toward a general-purpose robot that can autonomously synthesize a specialized library of abstractions and plan to solve a very broad set of tasks.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156646
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.