Show simple item record

dc.contributor.authorMeng, Kevin
dc.contributor.authorJimenez, Damian
dc.contributor.authorDevasier, Jacob
dc.contributor.authorNaraparaju, Sai Sandeep
dc.contributor.authorArslan, Fatma
dc.contributor.authorObembe, Daniel
dc.contributor.authorLi, Chengkai
dc.date.accessioned2024-09-04T17:37:54Z
dc.date.available2024-09-04T17:37:54Z
dc.identifier.issn2157-6904
dc.identifier.urihttps://hdl.handle.net/1721.1/156666
dc.description.abstractThis paper presents the latest developments to ClaimBuster?s claim-spotting model, which tackles the critical task of identifying check-worthy claims from large streams of information. We introduce the first adversarially-regularized, transformer-based claim-spotting model, which achieves state-of-the-art results on several bench-mark datasets. In addition to analyzing model performance metrics, we also quantitatively and qualitatively analyze the impact of ClaimBuster?s real-world deployment. Moreover, to help facilitate reproducibility and community engagement, we publicly release our codebase, dataset, data curation platform, API, Google Colab notebooks, and various ClaimBuster-based demo systems, at claimbuster.org.en_US
dc.publisherACMen_US
dc.relation.isversionof10.1145/3689212en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleGradient-Based Adversarial Training on Transformer Networks for Detecting Check-Worthy Factual Claimsen_US
dc.typeArticleen_US
dc.identifier.citationKevin Meng, Damian Jimenez, Jacob Daniel Devasier, Sai Sandeep Naraparaju, Fatma Arslan, Daniel Obembe, and Chengkai Li. 2024. Gradient-Based Adversarial Training on Transformer Networks for Detecting Check-Worthy Factual Claims. ACM Trans. Intell. Syst. Technol. Just Accepted (August 2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journalACM Transactions on Intelligent Systems and Technologyen_US
dc.identifier.mitlicensePUBLISHER_POLICY
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-09-01T07:45:32Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2024-09-01T07:45:33Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record