Show simple item record

dc.contributor.advisorSatyanarayan, Arvind
dc.contributor.authorPedraza Pineros, Isabella
dc.date.accessioned2024-09-16T13:47:42Z
dc.date.available2024-09-16T13:47:42Z
dc.date.issued2024-05
dc.date.submitted2024-07-11T14:36:48.705Z
dc.identifier.urihttps://hdl.handle.net/1721.1/156764
dc.description.abstractGrouping is a technique used to organize data into manageable pieces, reducing cognitive load and enabling users to focus on discovering higher-level insights and generating new questions. However, creating groups remains a challenge, often requiring users to have prior domain knowledge or an understanding of the underlying structure of the data. We introduce SAGE, a novel technique that leverages the knowledge base and pattern recognition abilities of large language models (LLMs) to segment and group data with domainawareness. We instantiate our technique through two structures: bins and highlights; bins are contiguous, non-overlapping ranges that segment a single field into groups; highlights are multi-field intersections of ranges that surface broader groups in the data. We integrate these structures into Olli, an open-source tool that converts data visualizations into accessible, keyboard-navigable textual formats to facilitate a study with 15 blind and low-vision (BLV) participants, recognizing them as experts in assessing agency. Through this study, we evaluate how SAGE impacts a user’s interpretation of data and visualizations, and find our technique provides a rich contextual framework for users to independently scaffold their initial sensemaking process.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright retained by author(s)
dc.rights.urihttps://rightsstatements.org/page/InC-EDU/1.0/
dc.titleSAGE: Segmenting and Grouping Data Effectively using Large Language Models
dc.typeThesis
dc.description.degreeM.Eng.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeMaster
thesis.degree.nameMaster of Engineering in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record