MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scaling Privacy Perserving Payments

Author(s)
Ali, Ayesha
Thumbnail
DownloadThesis PDF (1.970Mb)
Advisor
Virza, Madars
Narula, Neha
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
We explore privacy-preserving payments in a centralized setting, such as CBDCs. Specifically, we focus on two classes of designs that hide the transaction graph: Chaumian e-cash and Merkle tree-based systems (e.g., Tornado Cash), which differ both in their security assumptions and scalability. In our work we highlight scalability limitations in Merkle tree-based privacy systems that would be encountered in a network as large as a CBDC, and propose a sharded Merkle tree design to improve scalability while maintaining strong privacy. However, as we analyze, conventional sharding methods pose privacy risks, prompting introduction of a ’tree of sharded trees’ design that preserves privacy at a modest increase of latency. We describe, implement and evaluate all three designs, and find that unmodified Tornado Cash indeed suffers from resource-contention induced scalability bottlenecks. In contrast, our new design is achieves throughput that is less than an order of magnitude away from e-cash, despite providing auditability.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156765
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.