MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using heterogeneous Graph Neural Networks(hGNN) to predict cell-cell communication

Author(s)
Yan, Binwei
Thumbnail
DownloadThesis PDF (4.453Mb)
Advisor
Kellis, Manolis
Terms of use
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
This thesis investigates diverse computational methodologies for modeling cellular interactions using single-cell RNA sequencing (scRNA-seq) data. We evaluate the performance of Graph Neural Networks (GNNs) both with and without gene-gene edges, Contrastive Learning, and Variational Autoencoders (VAEs) across multiple datasets. Our study compares these methods and establishes benchmarks for assessing their effectiveness beyond traditional case studies. By integrating extensive signaling pathway data, we aim to unveil complex cell-cell communication patterns and regulatory mechanisms that conventional scRNA-seq analysis methods might overlook. Our approach emphasizes the use of spatial data as a crucial indicator, facilitated by the advanced capabilities of heterogeneous GNNs to model physical proximity. We found that our analysis of the functioning genes aligns with previous findings, proving our model’s effectiveness as a potential method for further analyze communication mechanisms.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156766
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.