MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Implementing Control-oriented Meta-learning on Hardware

Author(s)
Sohn, Joshua C.
Thumbnail
DownloadThesis PDF (8.200Mb)
Advisor
Azizan, Navid
Terms of use
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Unpredictable weather conditions pose a daunting challenge for the robust control of unmanned aerial vehicles, also known as drones. The control-oriented meta-learning algorithm aims to solve this problem by learning a controller that can adapt to dynamic environments. This algorithm has already been derived and simulated for a two-dimensional model. This project explores the implementation of the control-oriented meta-learning algorithm on a hardware platform. After extending the algorithm to a three-dimensional model, it was tested in a physics-based simulator and deployed on a hexarotor in the real world. Both in simulation and in real life, the learned controller outperformed a traditional controller in the presence of wind.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156775
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.