MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning an Embedding for Vehicle Telematics

Author(s)
Leonard, Matthew
Thumbnail
DownloadThesis PDF (4.689Mb)
Advisor
Madden, Samuel
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Vehicular telematics involves the collection and processing of data about driving behavior; however, mining and modeling this data is difficult due to its large volume. We hypothesize that the data will follow regular patterns of events that occur during drives, and that we can learn these patterns. With this intuition, we design a neural network that will effectively embed sections of accelerometer data into a lower-dimensional space, with a low loss of information and accuracy of the embedding relative to the dimensionality reduction, as well as several other desirable geometric properties for indexing and analysis of the data. We further develop an accurate summary of the distribution of each drive in this lower-dimensional space, which would serve as a proxy for the occurrence of events within these drives. From this system, we develop a method of comparison between different drives that highlights whether or not particular events occurred in each drive. This could be used to develop a more robust and nuanced risk model, and determine which events in a drive are associated with risk, to provide feedback to end users on their driving.
Date issued
2024-05
URI
https://hdl.handle.net/1721.1/156792
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.